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An analyt ic  solution is obtained for  the p rob l em of heat  t r an s f e r  in the l amina r  flow of 
Newtonian fluids in c i r c u l a r  pipes taking account of motion energy  diss ipat ion.  

In many engineer ing appl icat ions it is ex t r eme ly  impor tant  to take account of the effect of d iss ipa t ive  
heat ing on heat  t r an s f e r  in the l amina r  flow of Newtonian fluids in pipes .  But up to the p re sen t  t ime  the 
study of these  p r o b l e m s  has no tbeen  sufficiently explicit;  in pa r t i cu l a r  there  a r e  no data which make it p o s -  
s ible  to give not only a quali tat ive but a lso  a quanti tat ive es t ima te  of the effect  of the d iss ipa t ive  fac tor  on 
the fundamental  c h a r a c t e r i s t i c s  of heat  t r ans f e r .  

The a im of this pape r  is to fill  this gap to some  extent .  We consider  heat t r an s f e r  in the s teady m o -  
tion of Newtonian fluids in a c i r cu l a r  pipe when the fr ic t ion curves  can be approximated  by a theo logica l  
power  law 

= k,,;-.  ( I )  

When the veloci ty  prof i le  is es tabl ished,  the heat  flux along the axis of the pipe is smal l  by compar i son  
with the heat  flux radia l ly ,  the physical  p rope r t i e s  of the fluid a r e  constant and there  a r e  no additional i n t e r -  
nal heat  sou rces ,  the energy equation can be wr i t ten  
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F r o m  the equation of motion,  neglect ing body fo rces ,  and taking note of [1], we obtain a nondimension-  
al exp res s ion  for  the veloci ty  dis t r ibut ion and the diss ipat ion functions: 

u (~) = rn + 3__y(  1 _ ~.,+~), (3) 
m + l  

m + 3  Wn~+,. (4) 
2 (ID d Q1) 

In nondimensional  coordinates  Eq. (2) has the f o r m  

(1--~m+~)'O~o~ ~ll O~ - ~10  ( 0~_)+_m+32 - ~1 m+l (5) 

with the boundary conditions 

O~ (~, O) (6) 
(0, ~1)=00; ~(~, 1)----0; 0. 

This p r o b l e m  was cons idered  in the above formula t ion  in [1] for  the pa r t i cu l a r  case  when the fluid 
t e m p e r a t u r e  at the beginning of the pipe was equal to the wall  t e m p e r a t u r e .  In addition a solution was ob-  
tained in a f o r m  which preven ted  p r e c i s e  c lar i f ica t ion  of the effect  of diss ipat ion energy on the fundamental  
c h a r a c t e r i s t i c s  of heat  t r ans f e r .  The genera l  solution only gave finite r e su l t s  for  n = 0.5 (m = 2). 
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TABLE 1. Values of Nuoo for  Various m 

Nu~ (I~0) Nuoo (~=o) 

3,6567 
3,9494 
4,1753 
4,3544 
4,4995 

9,6000 
11,6667 
13,7143 
15,7500 
17,7778 10 

Nu= (t~=O) 

4,6192 
4,7193 
4,8044 
4,8771 
4,9402 

Nu~o (I]:/: O) 

19,8000 
21,8182 
23,8333 
25,8461 
27,8571 
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Fig. 1. The local Nusselt  number  as a function of the pipe length 
[continuous lines) m = 2; dotted lines) 5. The f igures attached to 
the curves  a re  the values of fl]. 

An acceptable method of solution was given in [2]. Using the eigenvalues and eigenfunctions given in 
[3] the author has  qualitatively analyzed the effect of internal  heal generation for  n = 1/3,  

In nei ther  [1] or  [2] was the most  Interes t ing region near  to the beginning of the pipe invest igated,s ince  
when the number  of eigenvalues is r e s t r i c t ed  (in [3] only the f i r s t  three  eigcnvalues were  given) large  e r r o r s  
occur  in the solution for  this region.  

A l a rge r  region was considered in [4] but heat t r ans fe r  was only discussed for  a uni form distr ibution 
of internal  heat sources  ac ross  a section of the flow. 

We seek a solution of Eq. (5) as the sum of two functions 

where  '~10?) is the t empera tu re  i n a  stabi l ized segment of heat  t r ans fe r  satisfying the equation 

with the boundary conditions 

1 d ( .  m + 3  (8) 

d~ln=o=~ld~ i=1 =0" 

The function ~2 (~, 7}) sat isf ies  the equation 

0~ o~ (9) 

with the boundary conditions 

'O's(O, ' q ) ~ O o - - O x ;  '0',~(~, I ) =  ~ O) " O. 

52 



~l/Ill ' t i t  
f 

\ f 7  
t , 6 ~ l z  , , ~k /  

.... o,I k ~  

Fig.  2. The length of the ini t ia l  t h e r m a l  s e g m e n t  lit  
as  a funct ion of the p a r a m e t e r  fl [1) m = 1; 2) 2; 3) 4; 
4) 6; 5) 8; 6) 10]. 

Ak=  

We s e e k  the so lu t ion  of Eq. (9) by F o u r i e r ' s  
me thod  of expanding in a s e r i e s  of eigenfunetior/s  
of ~} 07) s a t i s fy ing  the S t u r m - L i o u v f l l e  equat ion.  

We can  w r i t e  the g e n e r a l  so lu t ion  of Eq.  (5) 
a s  

O T - -  T w ----'E (A~ - -  [~A~) ~h (q) exp 
To - -  Tw ~ o  

(__4c~ m + l  1 x ) .l+ 
. . . .  + 1~ . 0 -  ~ ,)., 

m +  3 Pe d 

(10) 

w h e r e  the coef f i c i en t s  A~ and A k a r e  def ined by 
the equat ions  

i 

f o.~ (~]) n (1 - - n  ~+~) d~q �9 ~ , 

j " dp~ (rl) TI (I -- nm+:) dn 

1 

.i' @h (n) ~] (1 - -  rim+l) (1 - -  rim+a) drl 
0 

1 

S a~ (,1) n (1 - rim+ I) dq 
0 

The  coe f f i c i en t /3  is a n o n d i m e n s i o n a l  p a r a m e t e r  taking account  of the ef fec t  of m e c h a n i c a l  e n e r g y  d i s s i p a t i o n  
on hea t  t r a n s f e r ,  

2 (m + 3) ~ (T o - -  T,~) 

We can  wr i t e /~  in a m o r e  conven ien t  f o r m  

I i I I 

d ,n VI+-k - (12) ~. 4 s s :  - ~  

m -e3  ~ (T o - -  T~) 

fo r  a Newtonian f luid fl is the p r o d u c t  of the E c k e r t  and P r a n d t l  n u m b e r s .  Fo r  a non-Newton ian  fluid we  can 
obta in  a s i m i l a r  p roduc t  with a cons tan t  f a c t o r  if we r e p r e s e n t  the g e n e r a l i z e d  P rand t l  n u m b e r  in the M e t z -  
n e r  and Reed  [5] f o r m .  
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Fig.  3. The  m e a n  va lue  Nu as a funct ion of p ipe  length fo r  m -- 2 [con-  
t inuous l ines)  us ing  Eq.  (16); dot ted l ines)  u s ing  Eq.  08) ;  the n u m b e r s  
a t t ached  to the g r a p h s  a r e  the va lues  of fi]. 
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Fig .4 .  Limiting values of the parameter/3s%, taking ae -  
count of energy dissipation [continuous l i nes )us ing  Eq. 
{16); dotted lines) using Eq.  (18); the f igures attached to 
the curves  a r e  the values of m]. 

tion 
The reduced mean mass t empera tu re  at a given c ros s - sec t i on  of the pipe is de termined by the equa-  

~ =  "T--Tt~ = l  ~ m_.__._~.4 m-t-3 B~--~Bk • " 4  c~ (13) 
To--T  w " raq-5 + 4 -  - , m-{- I c~ m q- 3 

k=0 

where  

1 A [ d(I)k 

Having defined the local hea t - t r ans f e r  coefficient  r e f e r r e d  to the difference between the  mean mass 
t empera tu re  of the fluid and the wall t empera ture ,  we can obtain an express ion for  the local Nusselt  number:  

Nu =. ~ q- (B,~-- 13B~) exp - -  4 m +____~1 c~ 1 
m + 3  ~ e  

k=0 

{ m--l-4 m-l-3 ~ t30 ( mq-1 2_l_l ~_)} -I (14) 
k--~B~ •  - - 4  m-b3  ck Pe • ~ 4 (m q- 3) -t- m ~-- 1 k=0 c~ 

It follows f rom (14) that the l imiting Nusselt  number  is 

Nu~=  m+------~l cg for ~ = 0 ,  
m + 3  . 

Nu== 2 (m + 3) (m + 5) for ~ 0 .  (18) 
m + 4  

Values of Nu~ for  m = 1-10 a re  given in Table 1. For/3 = 0 these values agree  well with the resu l t s  
of [6]. 

Using Eqs.  (10), (13), and (14) a Minsk-22 computer  was p rogrammed  to calculate  the t empera tu re  
distribution at var ious c ro s s - s ec t i ons  of the pipe, the change in the mean mass  t empera tu re  distr ibution 
and the local  Nussel t  number  for  reduced pipe lengths (1/Pe) (x/d) = 1 �9 10-4-1 and the values of m given in 
Table 1. 

For  the above range of var ia t ions in the reduced lengths at the upper boundary ((1/Pe) (x/d) = 1.10-% 
re l iable  resu l t s  were  obtained with nine eigenfunctions and eigenvalues which were  defined for all values 
of m. Since there  a re  no s imi la r  r esu l t s  in the l i t e ra tu re  , data for  a Newtonian fluid (in = 1) [7] were  used 
for  ver i f icat ion.  Sat isfactory agreement  was also obtained for  available data on non-Newtonian fluids [3, 4]. 
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The Nussel t  number  is shown on Fig. 1 as a function of the reduced length for  m = 2 and 5. F r o m  a 
genera l  evaluation of the r e su l t s  w e h a v e  obtained we can note the inc reased  effect  of d iss ipa t ive  heating 
on heat  trm~sfer as m i n c r e a s e s .  Hence the ro le  of d iss ipa t ive  heating for  non-Newtonian fluids is always 
g r e a t e r  when fl = const than for  Newtonian fluids.  

The extent of this influence i nc rea se s  when m = const  as the reduced length inc reases ;  all  the curves  
approach a l imit ing value independent of/3. This is a logical contradict ion of the na ture  of the curve  when 
fi = 0, the l imit ing value of which is s e v e r a l  t imes less  than Nu~ when/3 = 0. 

Since this si tuation,  which to some  extent we knew, has not been studied for  a Newtonian fluid, specia l  
invest igat ion of the p rob l em  was made.  It appea r s  that Nu~ d e c r e a s e s  as /3 d e c r e a s e s ,  tending to a l imit ing 
value Nu~ for/3 = 0, but this reduct ion begins for  ve ry  smal l  values  of 13 -< 1 .10  -6, the effect of which in the 
initial s tages  is in genera l  negligible.  The behav ior  of the function Nu = f ( (1 /Pe)  (x/d)) is different  for  pos i -  
tive (cooling) and negat ive (heating) values  of/3. 

For/3 > 0 and 0 < 13 < 1, initially Nu d e c r e a s e s  along the pipe and then inc reases  to Nu~; when/3 > 1, 
Nu continuously d e c r e a s e s  along the length of the pipe,  The value of/3 at  which the nature  of the function 
changes depends ve ry  weakly on m,  dec reas ing  sl ightly as m inc rea se s .  

When/3 < 0, the function is discontinuous,  the upper  b ranch  of the curve ,  going off to infinity,  c o r r e -  
sponding to a change in the di rect ion of the flux. 

Energy diss ipat ion a lso  has a significant  influence on the length of the initial t he rma l  segment .  F ig-  
u r e  2 shows the reduced length of the initial t he rma l  segment  for  which Nu, to within l%,is  equal to Nu~ for  
m = 1-10, as a function of/3. The reduct ion in Nu as /3 i n c r e a s e s ,  when [3 > 0, which as been noted for  New- 
tonian fluids [8] holds,  as we see  only when/3 v a r i e s  within definite l imi t s .  The min imum of the curves  l ies 
in the region/3 ~ 1 and co r r e sponds  to a change in the na ture  of the function Nu = f ( (1 /Pe)  (x/d)) .  

When/3 < 0, the reduced  length /it monotonical ly d e c r e a s e s  as 13 i n c r e a s e s .  

For  ve ry  smal l  values  of/3 (1 �9 10 -6) the curve  approaches  values  of the reduced  length when/3 = 0 
(0.055-0.05 for  m = 1-10); on Fig. 2 this bend coincides with the ordinate  axis and conventionally is not 
shown. 

We define the mean value Nu f r o m  the h e a t - t r a n s f e r  coefficient  r e f e r r e d  to the a r i thmet ic  mean of the 
t e m p e r a t u r e  dis t r ibut ion.  If in addition the quantity of heat  absorbed  by the fluid is defined in the usual way 
f r o m  the d i f ference  between the t e m p e r a t u r e s  at the beginning of the pipe and at a given sect ion,  then the 
express ion  for  Nu takes the f o r m  

N'-fi = 1__ Pe d 1 --O_ (16) 
2 x 14-0 

with a s i m i l a r  express ion  for  l a rge  values of the reduced length, when 

N---u. = 1 Pe d_d (m q- 5) - -  [3 (m q- 4) 
2 x (m q- 5) q- [3 (m + 4) 

Equation (16) is sui table  for  engineer ing calculat ions of the heat  
co r r e spond  to the actual  quantity of heat  absorbed  by the heat  t r a n s f e r  
tion on cooling and increased  by it on heating.  

The value of Nu, computed f r o m  the actual heat  flux through the wall,  is 

N----~d = 1 Pe d 1 - - 0  1 (18) 
%- x lff--O q- 413 (m ff- 3) 1+-----~" 

The heat  t r an s f e r  for  the external  medium is calculated f r o m  (18). 

F igure  3 gives the r e su l t s  of calculat ing Nn and Nu d f r o m  (16) and (18) for  m = 2 and/3 > 0. As the 
d iss ipa t ive  fac tor  i nc reases ,  ~ d e c r e a s e s  and Nu d i n c r e a s e s .  Thus in spite of the inc rease  in the actual  
h e a t - t r a n s f e r  coefficient ,  the intensity of cooling continuously d e c r e a s e s  as /3 i nc r ea se s .  In the l imit  at 
some  dis tance f r o m  the beginning of the pipe (N--u = 0 and cor respondingly  "0 = 1) the mean m a s s  t e m p e r a t u r e  
is equal to the fluid t e m p e r a t u r e  at the beginning of the pipe.  Then Nu~ is negat ive,  which co r responds  to 
values 13 > 1 (Eq. (17) ) ,be ingsmal le r ,  the l a r g e r  m is.  For  sufficiently la rge  but r ea l  values  of/3 > 0.7, -0 

= const, 

(17) 

t r a n s f e r  inside the pipe,  but does not 
sur face :  it is reduced  by heat  d i s s i p a -  
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init ially d e c r e a s e s  and then s tab i l i zes .  Obviously a fu r the r  inc rease  in the reduced length leads to a sha rp  
reduct ion in the cooling effect.  Thus by analyzing Eqs.  (13) and (16) we can solve a ve ry  important  eng inee r -  
ing p rob lem - the choice of the opt imum pipe length in h e a t - t r a n s f e r  appara tuses  designed for  cooling high- 
v i scos i ty  non-Newtonian fluids. 

As we see  f r o m  the foregoing,  taking account of the d iss ipat ive  fac tor  in solving l amina r  h e a t - t r a n s f e r  
p rob lems  leads to an inc rease  in the complexi ty  of the computat ional  express ions .  Hence those values  of 
/3 a r e  of in te res t ,  for  which the effect  of this fac tor  can be neglected for  a given accuracy  of calculat ions.  
Figure 4 shows such values ,__each recurve bounding the l imit ing values  of 135% giving an e r r o r  of not m o r e  than 
5% in the de terminat ion  of Nu and NUd, if the equations in which the d iss ipa t ive  fac tor  is ignored a re  used 
for  the calculat ion.  

As the reduced length and m i n c r e a s e , t h e  l imit ing values  of fl dec rease ;  the nature  of the effect  of m 
comple te ly  co r responds  to the above conclusion about the i nc rea se  the ro le  of the d iss ipa t ive  fac tor  in 
l amina r  heat  t r a n s f e r  in non-Newtonian fluids by compar i son  with that in Newtonian fluids.  

The equations given above for  the effect  of d iss ipa t ive  heating were  obtained under  the condition that 
the physical  p r o p e r t i e s  of the fluid were  independent of the t empe ra tu r e .  The p rob lem actual ly a r i s e s  to 
what extent this assumpt ion  (it pr incipal ly  effects the rheological  p a r a m e t e r s )  effects  the final r e su l t s .  

In the solutions known to us of the noniso thermal  p rob lem,  the d iss ipa t ive  fac tor  was ignored [9, 10, 
11] and so the p rob lem which in te res t s  us cannot be c lar i f ied  by compar i son  with r e su l t s  in the l i t e r a tu re .  

In this connection, to make  an approx imate  evaluation of the e r r o r  in the r e su l t s  we obtained, we c a r -  
r ied  out a number  of numer ica l  calculat ions of the noniso thermal  p rob l em by success ive  approximat ions  
for  high-viscosi ty  non-Newtonian fluids (plastic lubr icants) ,  the rheological  p rope r t i e s  of which were  given 
in [12]. 

The flow curves  for  these  fluids, within the shee r  s t r e s s  l imi ts  rw-0.25"rw, we re  approximated  by a 
power law using Eq. (1) with the introduction of a t e m p e r a t u r e  fac to r ,  the effect  of which on the index o f  the non-  
Newtonian behav ior  can be ignored for  the measu red  t e m p e r a t u r e  d rops .  

Analysis  of the resu l t s  obtained showed that the quali tat ive side of the p rob lem is r e f l ec ted  quite c o r -  
r ec t ly  by the foregoing solut ions.  However ,  the following considera t ions  apply to the quanti tat ive r e su l t s .  

For  smal l  va lues  of the reduced length the t e m p e r a t u r e  drops  were  cons iderable  at sect ions  of the 
flow but the effect  of the d iss ipat ive  fac tor  was smal l .  As the reduced length inc reased  the t e m p e r a t u r e  
prof i le  b e c a m e  m o r e  uni form and at the s a m e  t ime the ro le  of the diss ipat ive  fac tor  inc reased .  Obviously 
there  mus t  be  a pa r t i cu la r  region of reduced  lengths in which the e r r o r s  in the solution a r e  approx imate ly  
the s a m e .  F r o m  the r e su l t s  we obtained this in terva l  is bounded by the reduced  length values 10 -4 < (1/Pc) 
(x/d) < 5 �9 10 -3 and includes the mos t  important  region of solutions for  engineer ing p rac t i ce .  

When/3 < 0.8 and (k~v/km) < 2.5-3.0 the e r r o r  in the r e su l t s  in this region does not exceed *15% (posi- 
tive values  of the e r r o r s  r e f e r  to Cooling, [3 > 0; negat ive  values r e f e r  to heating/3 < 0), if the noniso thermal  
conditions a r e  taken into account by introducing the Eider  and Tate co r rec t ion ,  modified by Metzner  for  non-  
Newtonian fluids [13]. The physical  constants  in the diss ipat ion p a r a m e t e r  (Eq. (12)), a r e  de te rmined  f rom 
the mean m a s s  t e m p e r a t u r e  of the fluid. 

T 

~7 = r / r  w 
V 
W 

~d(~) 
,~ = (T - Tw)/(Wr2w/k); 
0 = (T - Tw)/ (T  0 - Tw) 
ek 

�9 k (7/) 
k '  = k((3n + 1)/4n) n 

F 

N O T A T I O N  

is the shea r  s t r e s s ;  
is the shea r  r a t e ;  
is the d imens ionless  coordinate;  
is the mean fluid velocity;  
is the densi ty of internal  heat  sources  pe r  unit volume;  
is the d iss ipat ive  fac tor ;  

is the reduced nondimensional  t empera tu re ;  
a r e  the eigenvalues;  
a r e  the eigenfunetions; 
is the constant in the rheological  equation T = k '  (4F)n'; 
is the mean shea r  ra te ;  
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d 
X 
m = l /n ,  where n = n' 

is the pipe diameter; 
is the thermal conductivity of the fluid; 
is the index of non-Newtonian behavior in (1). 

S u b s c r i p t s  

w refers  to the wall; 
m refers  to the mean mass temperature; 
0 refers  to the entrance. 
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