THE EFFECT OF MOTION ENERGY DISSIPATION ON
HEAT TRANSFER FOR LAMINAR FLOW OF NEWTONIAN
FLUIDS IN CIRCULAR PIPES
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An apalytic solution is obtained for the problem of heat transfer in the laminar flow of
Newtonian fluids in circular pipes taking account of motion energy dissipation,

In many engineering applications it is extremely important to take account of the effect of dissipative
heating on heat transfer in the laminar flow of Newtonian fluids in pipes. But up to the present time the
study of these problems has notbeen sufficiently explicit; in particular there are no data which make it pos-
sible to give not only a qualitative but also a quantitative estimate of the effect of the dissipative factor on
the fundamental characteristics of heat transfer,

The aim of this paper is to fill this gap to some extent, We consider heat transfer in the steady mo-
tion of Newtonian fluids in a circular pipe when the friction curves can be approximated by a rheological
power law

T kyn, (1)

When the velocity profile is established, the heat flux along the axis of the pipe is small by comparison
with the heat flux radially, the physical properties of the fluid are constant and there are no additional inter-
nal heat sources, the energy equation can be written
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From the equation of motion, neglecting body forces, and taking note of [1], we obtain a nondimension-
al expression for the velocity distribution and the dissipation functions:
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In nondimensional coordinates Eq. (2) has the form
with the boundary conditions
80, =19, OE 1)=0; ﬁ%ﬂ:o. (6)

This problem was considered in the above formulation in [1] for the particular case when the fluid
temperature at the beginning of the pipe was equal to the wall temperature, In addition a solution was ob-
tained in a form which prevented precise clarification of the effect of dissipation energy on the fundamental
characteristics of heat transfer. The general solution only gave finite results for n = 0.5 (m = 2).
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TABLE 1, Values of Nu, for Various m

m Nug (B=0) | Nug (B0) m Nitg (B=0) | Nuo (B+0)
1 3,6567 ﬂ 9,6000 6 4,6192 19,8000
2 3,9494 11,6667 7 4,7193 21,8182
3 4,1753 13,7143 8 4,8044 23,8333
4 4,3544 15,7500 9 . 4,8771 25,8461
5 4,4995 17,7778 10 4,9402 27,8571
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Fig.1. The local Nusselt number as a function of the pipe length

[continuous lines) m = 2; dotted lines) 5. The figures attached to
the curves are the values of g].

An acceptable method of solution was given in [2], Using the eigenvalues and eigenfunctions given in
[3] the anthor has qualitatively analyzed the effect of internal heat generation for n = 1/3,

In neither [1] or [2] was the most interesting region near to the beginning of the pipe investigated, since
when the number of eigenvalues is restricted (in [3] only the first three eigenvalues were given) large errors
occur in the solution for this region,

A larger region was considered in [4] but heat transfer was only discussed for a uniform distribution
of internal heat sources across a section of the flow,

We seek a solution of Eq. (5) as the sum of two functions
& 1) =0,0) + 8 E ), )

where 4, () is the temperature in a stabilized segment of heat transfer satisfying the equation
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with the boundary conditions
dd
1 =0 = 0.
dn n=o n=1
The function & ¢, 1) satisfies the equation
Tigi) 1 8 0%
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with the boundary conditions
. o, (5, 0y -
8,0, 1 = 0—8; 8,5 1)=Th 20
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i : We seek the solution of Eq. (9) by Fourier's
\ A 2 ‘ method of expanding in a series of eigenfunctions
P yau k) of &(n) satisfying the Sturm —Liouville equation,
-
N \ 4 56 We can write the general solution of Eq. (5)
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Fig.2. The length of the initial thermal segment j;
as a function of the parameter [1) m = 1; 2) 2; 3) 4;
4) 6; 5) 8; 6) 10].

where the coefficients A& and Af,: are defined by
the equations
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The coefficient 8 is a nondimensional parameter taking account of the effect of mechanical energy dissipation
on heat transfer,

B— i . (11)
2(m+3)1(T,—Ty)

We can write 8 inh a more convenient form

(12)

T Tm+3 AT, —T,)

for a Newtonian fluid § is the product of the Eckert and Prandtl numbers. For a non-Newtonian fluid we can
obtain a similar product with a constant factor if we represent the generalized Prandtl number in the Metz~
ner and Reed [5] form,
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Fig.3. The mean value Nu as a function of pipe length for m = 2 [con-
tinuous lines) using Eq. (16); dotted lines) using Eq. (18); the numbers
attached to the graphs are the values of g],
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Fig.4, Limiting values of the parameter Bsq, taking ac-
count of energy dissipation [continuous lines) using Eq.

(16); dotted lines) using Eq. (18); the figures attached to
the curves are the values of m],

/

The reduced mean mass temperature at a given cross-section of the pipe is determined by the equa-

tion
- T-—T m+4 |, m+3 s Bi—PBi ( m+i 51 x) 13
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Having defined the local heat-transfer coefficient referred to the difference between the mean mass
temperature of the fluid and the wall temperature, we can obtain an expression for the local Nusselt number:

Na={p m L3 +2(Bz—ﬁ32)exp(~4 mtl gl =~ )}

ntd “Pe
m+ 4 m+3 s Bl—BB: m+l 21 x \}
> X expf -—~4 ———— tp— —— 14
{ﬁ tmt 3 T mal kgo 2 p( m+3 " Pe d)} a9
1t follows from (14) that the limiting Nusselt number is
m+1 2
Nue = fi = 0,
u m3 'co or ﬁ
5
Nu, = 2 23 E9 ey, (15)
m-+4

Values of Nu_ for m = 1-10 are given in Table 1. For g8 = 0 these values agree well with the results
of [6].

Using Egs, (10}, (13), and (14) a Minsk-22 computer was programmed to calculate the temperature
distribution at various cross-sections of the pipe, the change in the mean mass temperature distribution
and the local Nusselt number for reduced pipe lengths (1/Pe)(x/d) = 1-107%-1 and the values of m given in
Table 1,

For the above range of variations in the reduced lengths at the upper boundary ((1/Pe)(x/d) = 1-107%
reliable results were obtained with nine eigenfunctions and eigenvalues which were defined for all values

of m. Since there are no similar results in the literature,data for a Newtonian fluid (m = 1) [7] were used
for verification, Satisfactory agreement was also obtained for available data on non-Newtonian fluids [3, 4].
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The Nusselt number is shown on Fig,1 as a function of the reduced length for m = 2 and 5, From a
general evaluation of the results we have obtained we can note the increased effect of dissipative heating
on heat trangfer as m increases, Hence the role of dissipative heating for non-Newtonian fluids is always
greater when 8 = const than for Newtonian fluids,

The extent of thig influence increases when m = const as the reduced length increases; all the curves
approach a limiting value independent of 3. This is a logical contradiction of the nature of the curve when
B = 0, the limiting value of which is several times less than Nu_ when 8 = 0,

Since this situation, which to some extent we knew, has not been studied for a Newtonian fluid, special
investigation of the problem was made,. It appears that Nu, decreases as 8 decreases, tending to a limiting
value Nu,, for 8 = 0, but this reduction begins for very small values of 3 = 110, the effect of which in the
initial stages is in general negligible, The behavior of the function Nu = f( (1/Pe) (x/d)) is different for posi-
tive (cooling) and negative (heating) values of 3.

For 8 > 0 and 0 < 8 < 1, initially Nu decreases along the pipe and then increases to Nu,; when 3 > 1,
Nu continuously decreases along the length of the pipe, The value of 8 at which the nature of the function
changes depends very weakly on m, decreaging slightly as m increases,

When 8 < 0, the function is discontinuous, the upper branch of the curve, going off to infinity, corre-
sponding to a change in the direction of the flux,

Energy dissipation also has a significant influence on the length of the initial thermal segment. Fig-
ure 2 shows the reduced length of the initial thermal segment for which Nu, to within 1%,is equal to Nu,, for
m = 1-10, as a function of 3. The reduction in Nu as 8 increases, when 8 > 0, which as been noted for New-
tonian fluids [8] holds, as we see only when 8 varies within definite limits, The minimum of the curves lies
in the region 8 ~ 1 and corresponds to a change in the nature of the function Nu = f((1L/Pe) (x/d)).

When 8 < 0, the reduced length /;; monotonically decreases as § increases,

For very small values of 8 (1.107% the curve approaches values of the reduced length when 8 = 0
(0,055-0,05 for m = 1-10); on Fig.2 this bend coincides with the ordinate axis and conventionally is not
shown,

We define the mean value Nu from the heat-transfer coefficient referred to the arithmetic mean of the
temperature distribution, If in addition the quantity of heat absorbed by the fluid is defined in the usual way
from the difference between the temperatures at the beginning of the pipe and at a given section, then the
expression for Nu takes the form

Mo Lped 1—8 (16)
2 X 1406

with a similar expression for large values of the reduced length, when 6 = const,

mzé_pei (m+5 —p(m-+4) (17)

¥ (ML +pmtd)

Equation (16) is suitable for engineering calculations of the heat transfer inside the pipe, but does not
correspond to the actual quantity of heat absorbed by the heat transfer surface: it is reduced by heat dissipa-
tion on cooling and increased by it on heating,

The value of Nu, computed from the actual heat flux through the wall, is
= 1 d 1—8 1 (18)
Nuy = — Pe —— — 48 (m + 3 — .
47 g x1+9+5(+)1+6

The heat transfer for the external medium is calculated from (18),

Figure 3 gives the results of calculating Nu and Nuy from (16) and (18) for m =2 and 8 > 0. As the
dissipative factor increases, Nu decreases and Nug increases. Thus in spite of the increase in the actual
heat-transfer coefficient, the intensity of cooling continuously decreases as g increases. In the limit at
some distance from the beginning of the pipe (Nu = 0 and correspondingly @ = 1) the mean mass temperature
is equal to the fluid temperature at the beginning of the pipe. Then Nu,, is negative, which corresponds to
values 8 > 1 (Eq, (17)),being smaller, the larger m is., For sufficiently large but real values of 8 > 0.7, 0
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initially decreases and then stabilizes, Obviously a further increase in the reduced length leads to a sharp
reduction in the cooling effect, Thus by analyzing Eqs. (13) and (16) we can solve a very important engineer~
ing problem - the choice of the optimum pipe length in heat-transfer apparatuses designed for cooling high-
viscosity non-Newtonian fluids.

As we see from the foregoing, taking account of the dissipative factor in solving laminar heat-transfer
problems leads to an increase in the complexity of the computational expressions. Hence those values of
B are of interest, for which the effect of this factor can be neglected for a given accuracy of calculations,
Figure 4 shows such values, each curve bounding the limiting values of Bsq, giving an error of not more than
5% in the determination of Nu and Nud, if the equations in which the dissipative factor is ignored are used
for the calculation,

As the reduced length and m increase,the limiting values of 8 decrease; the nature of the effect of m
completely corresponds to the above conclusion about the increase the role of the dissipative factor in
laminar heat transfer in non-Newtonian fluids by comparison with that in Newtonian fluids.

The equations given above for the effect of dissipative heating were obtained under the condition that
the physical properties of the fluid were independent of the temperature. The problem actually arises to
what extent this assumption (it principally effects the rheological parameters) effects the final results,

In the solutions known to us of the nonisothermal problem, the dissipative factor was ignored [9, 10,
11] and so the problem which interests us cannot be clarified by comparison with results in the literature.

In this connection, to make an approximate evaluation of the error in the results we obtained, we car-
ried out a number of numerical calculations of the nonisothermal problem by successive approximations
for high-viscosity non~-Newtonian fluids (plastic lubricants), the rheological properties of which were given
in [12].

The flow curves for these fluids, within the sheer stress limits Ty-0.257w, Were approximated by a
power law using Eq, (1) with the introduction of a temperature factor, the effect of which on the index of . the non-
Newtonian behavior can be ignored for the measured temperature drops.

Analysis of the results obtained showed that the qualitative gide of the problem is reflected quite cor-
rectly by the foregoing solutions, However, the following considerations apply to the quantitative results,

For small values of the reduced length the temperature drops were considerable at sections of the
flow but the effect of the dissipative factor was small, As the reduced length increased the temperature
profile became more uniform and at the same time the role of the dissipative factor increased., Obviously
there must be a particular region of reduced lengths in which the errors in the solution are approximately
the same, From the results we obtained this interval is bounded by the reduced length values 107¢ < (1/Pe)
(x/d) < 5.107% and includes the most important region of solutions for engineering practice,

When 8 < 0.8 and (LR'v/k;n) < 2,5-3.0 the error in the results in this region does not exceed +£15% (posi-
tive values of the errors refer to cooling, 8 > 0; negative values refer to heating 8 < 0), if the nonisothermal
conditions are taken into account by introducing the Eider and Tate correction, modified by Metzner for non-
Newtonian fluids [13]. The physical constants in the dissipation parameter (Eq, (12)), are determined from
the mean mass temperature of the fluid,

NOTATION

is the shear stress;
is the shear rate;
=1/ry is the dimensionless coordinate;
is the mean fluid velocity;
is the density of internal heat sources per unit volume;
<I>d('q} is the dissipative factor;
= (T — Tg)/ (WrZ /A);
0 = (T — Ty)/(Ty — w) is the reduced nondimensional temperature;

S <4329

Ck are the eigenvalues;
‘I’k("l) are the eigenfunctions;

=k((3n + 1)/4n)n is the constant in the rheological equation T = k' (4I‘)n';
I‘ is the mean shear rate;
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d
A

is the pipe diameter;
is the thermal conductivity of the fluid;

m = 1/n, where n =n' is the index of non-Newtonian behavior in (1),

Subscripts

w
m
0

-

°

QG}CH:PODNH
.

10,
11,

12,

13,

refers to the wall;
refers to the mean mass temperature;
refers to the entrance,
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